Calculus: Early Transcendentals
Fourth Edition ©2019 Jon Rogawski; Colin Adams; Robert Franzosa Formats: Achieve, E-book, Print
As low as C$68.99
As low as C$68.99
- Product Overview
- Content Material
- Assessment
- Reports and Insights
- Teaching Resources
- Support and Services
Authors
-
Jon Rogawski
Jon Rogawski received his undergraduate and master’s degrees in mathematics simultaneously from Yale University, and he earned his PhD in mathematics from Princeton University, where he studied under Robert Langlands. Before joining the Department of Mathematics at UCLA in 1986, where he was a full professor, he held teaching and visiting positions at the Institute for Advanced Study, the University of Bonn, and the University of Paris at Jussieu and Orsay. Jon’s areas of interest were number theory, automorphic forms, and harmonic analysis on semisimple groups. He published numerous research articles in leading mathematics journals, including the research monograph Automorphic Representations of Unitary Groups in Three Variables (Princeton University Press). He was the recipient of a Sloan Fellowship and an editor of the Pacific Journal of Mathematics and the Transactions of the AMS. As a successful teacher for more than 30 years, Jon Rogawski listened and learned much from his own students. These valuable lessons made an impact on his thinking, his writing, and his shaping of a calculus text. Sadly, Jon Rogawski passed away in September 2011. Jon’s commitment to presenting the beauty of calculus and the important role it plays in students’ understanding of the wider world is the legacy that lives on in each new edition of Calculus.
-
Colin Adams
Colin Adams is the Thomas T. Read professor of Mathematics at Williams College, where he has taught since 1985. Colin received his undergraduate degree from MIT and his PhD from the University of Wisconsin. His research is in the area of knot theory and low-dimensional topology. He has held various grants to support his research, and written numerous research articles. Colin is the author or co-author of The Knot Book, How to Ace Calculus: The Streetwise Guide, How to Ace the Rest of Calculus: The Streetwise Guide, Riot at the Calc Exam and Other Mathematically Bent Stories, Why Knot?, Introduction to Topology: Pure and Applied, and Zombies & Calculus. He co-wrote and appears in the videos “The Great Pi vs. E Debate” and “Derivative vs. Integral: the Final Smackdown.” He is a recipient of the Haimo National Distinguished Teaching Award from the Mathematical Association of America (MAA) in 1998, an MAA Polya Lecturer for 1998-2000, a Sigma Xi Distinguished Lecturer for 2000-2002, and the recipient of the Robert Foster Cherry Teaching Award in 2003. Colin has two children and one slightly crazy dog, who is great at providing the entertainment.
-
Robert Franzosa
Robert (Bob) Franzosa is a professor of mathematics at the University of Maine where he has been on the faculty since 1983. Bob received a BS in mathematics from MIT in 1977 and a Ph.D. in mathematics from the University of Wisconsin in 1984. His research has been in dynamical systems and in applications of topology in geographic information systems. He has been involved in mathematics education outreach in the state of Maine for most of his career. Bob is a co-author of Introduction to Topology: Pure and Applied and Algebraic Models in Our World. He was awarded the University of Maine’s Presidential Outstanding Teaching award in 2003. Bob is married, has two children, three step-children, and one recently-arrived grandson.
Table of Contents
Chapter 1: Precalculus Review
1.1 Real Numbers, Functions, and Graphs
1.2 Linear and Quadratic Functions
1.3 The Basic Classes of Functions
1.4 Trigonometric Functions
1.5 Inverse Functions
1.6 Exponential and Logarithmic Functions
1.7 Technology: Calculators and Computers
Chapter Review Exercises Chapter 2: Limits
2.1 The Limit Idea: Instantaneous Velocity and Tangent Lines
2.2 Investigating Limits
2.3 Basic Limit Laws
2.4 Limits and Continuity
2.5 Indeterminate Forms
2.6 The Squeeze Theorem and Trigonometric Limits
2.7 Limits at Infinity
2.8 The Intermediate Value Theorem
2.9 The Formal Definition of a Limit
Chapter Review Exercises Chapter 3: Differentiation
3.1 Definition of the Derivative
3.2 The Derivative as a Function
3.3 Product and Quotient Rules
3.4 Rates of Change
3.5 Higher Derivatives
3.6 Trigonometric Functions
3.7 The Chain Rule
3.8 Implicit Differentiation
3.9 Derivatives of General Exponential and Logarithmic Functions
3.10 Related Rates
Chapter Review Exercises Chapter 4: Applications of the Derivative
4.1 Linear Approximation and Applications
4.2 Extreme Values
4.3 The Mean Value Theorem and Monotonicity
4.4 The Second Derivative and Concavity
4.5 L’Hôpital’s Rule
4.6 Analyzing and Sketching Graphs of Functions
4.7 Applied Optimization
4.8 Newton’s Method
Chapter Review Exercises Chapter 5: Integration
5.1 Approximating and Computing Area
5.2 The Definite Integral
5.3 The Indefinite Integral
5.4 The Fundamental Theorem of Calculus, Part I
5.5 The Fundamental Theorem of Calculus, Part II
5.6 Net Change as the Integral of a Rate of Change
5.7 The Substitution Method
5.8 Further Integral Formulas
Chapter Review Exercises Chapter 6: Applications of the Integral
6.1 Area Between Two Curves
6.2 Setting Up Integrals: Volume, Density, Average Value
6.3 Volumes of Revolution: Disks and Washers
6.4 Volumes of Revolution: Cylindrical Shells
6.5 Work and Energy
Chapter Review Exercises Chapter 7: Techniques of Integration
7.1 Integration by Parts
7.2 Trigonometric Integrals
7.3 Trigonometric Substitution
7.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions
7.5 The Method of Partial Fractions
7.6 Strategies for Integration
7.7 Improper Integrals
7.8 Numerical Integration
Chapter Review Exercises Chapter 8: Further Applications of the Integral
8.1 Probability and Integration
8.2 Arc Length and Surface Area
8.3 Fluid Pressure and Force
8.4 Center of Mass
Chapter Review Exercises Chapter 9: Introduction to Differential Equations
9.1 Solving Differential Equations
9.2 Models Involving y=k(y-b)
9.3 Graphical and Numerical Methods
9.4 The Logistic Equation
9.5 First-Order Linear Equations
Chapter Review Exercises Chapter 10: Infinite Series
10.1 Sequences
10.2 Summing an Infinite Series
10.3 Convergence of Series with Positive Terms
10.4 Absolute and Conditional Convergence
10.5 The Ratio and Root Tests and Strategies for Choosing Tests
10.6 Power Series
10.7 Taylor Polynomials
10.8 Taylor Series
Chapter Review Exercises Chapter 11: Parametric Equations, Polar Coordinates, and Conic Sections
11.1 Parametric Equations
11.2 Arc Length and Speed
11.3 Polar Coordinates
11.4 Area and Arc Length in Polar Coordinates
11.5 Conic Sections
Chapter Review Exercises Chapter 12: Vector Geometry
12.1 Vectors in the Plane
12.2 Three-Dimensional Space: Surfaces, Vectors, and Curves
12.3 Dot Product and the Angle Between Two Vectors
12.4 The Cross Product
12.5 Planes in 3-Space
12.6 A Survey of Quadric Surfaces
12.7 Cylindrical and Spherical Coordinates
Chapter Review Exercises Chapter 13: Calculus of Vector-Valued Functions
13.1 Vector-Valued Functions
13.2 Calculus of Vector-Valued Functions
13.3 Arc Length and Speed
13.4 Curvature
13.5 Motion in 3-Space
13.6 Planetary Motion According to Kepler and Newton
Chapter Review Exercises Chapter 14: Differentiation in Several Variables
14.1 Functions of Two or More Variables
14.2 Limits and Continuity in Several Variables
14.3 Partial Derivatives
14.4 Differentiability, Tangent Planes, and Linear Approximation
14.5 The Gradient and Directional Derivatives
14.6 The Chain Rule
14.7 Optimization in Several Variables
14.8 Lagrange Multipliers: Optimizing with a Constraint
Chapter Review Exercises Chapter 15: Multiple Integration
15.1 Integration in Two Variables
15.2 Double Integrals Over More General Regions
15.3 Triple Integrals
15.4 Integration in Polar, Cylindrical, and Spherical Coordinates
15.5 Applications of Multiple Integrals
15.6 Change of Variables
Chapter Review Exercises Chapter 16: Line and Surface Integrals
16.1 Vector Fields
16.2 Line Integrals
16.3 Conservative Vector Fields
16.4 Parametrized Surfaces and Surface Integrals
16.5 Surface Integrals of Vector Fields
Chapter Review Exercises Chapter 17: Fundamental Theorems of Vector Analysis
17.1 Green’s Theorem
17.2 Stokes’ Theorem
17.3 Divergence Theorem
Chapter Review Exercises
Product Updates
ACHIEVE FOR CALCULUS
Achieve focuses on engaging students through pre-class and post-class assessment, interactive activities, and a full e-book. Achieve is a complete learning environment with easy course setup, gradebook, and LMS integration.
- Homework: Achieves proprietary grading algorithm combines our homegrown parser and the computer algebra system, SymPy, to accept every valid equivalent answer and to trigger warnings for answers entered in an incorrect format. Detailed, error-specific feedback, and fully worked solutions provide in-question guidance for students as they solve. Homework is easy to format for students by using our intuitive Math Palette, and it is easy to edit for instructors using Macmillans built-in question editor.
- Guided Learn and Practice assignments include interactive content, videos, and instructional feedback to prepare students before they come to class.
- CalcClips tutorial videos are integrated throughout the e-book and available in pre-built Guided Learn & Practice assignments meant for formative exercise exploration.
- Dynamic Figures, powered by Desmos, take students experience further with conceptual and computational questions about the interactive Dynamic Figures. These book-specific figures are embedded directly in the e-book and included with assessment in pre-built Guided Learn & Practice assignments.
- LearningCurve adaptive quizzing offers individualized question sets and feedback for each student based on his or her correct and incorrect responses.
New in Achieve for 2023:
- Over 100 Desmos-powered Graded Graph exercises, which allow students to manipulate points and functions on an autograded graph, are available in the question bank.
- Video feedback, embedded within the feedback tab of homework exercises, is available for 250 of the most frequently assigned questions, providing brief step-by-step tutorial videos to guide students toward the correct answer.
- A new video index is available in the Resources tab, linking to correlated videos from the popular Patrick JMT YouTube channel.
- New question types inspired by generative AI tools encourage students to identify the error and think conceptually to recognize the mistaken step. These 100+ new exercises, marked with "(ITE)" in the question bank, provide an opportunity to show mastery of the entire problem, instead of simply finding the final correct answer.
- Chapter-level adaptive quizzes are now available as an end of chapter study tool, in addition to existing section-level adaptive quizzes.
For more information on Achieve platform updates, visit the Achieve Whats New page here:
https://www.macmillanlearning.com/college/us/digital/achieve/whats-new
General themes of the revision include the following (a detailed list of changes available):
- Rewrite portions to increase readability without reducing the level of mathematical rigor. This includes increasing clarity, improving organization, and building consistency.
- Add applications, particularly in life science and earth science to broaden the scientific fields represented in the book. In particular, there are a number of new examples and exercises in climate science, an area that is currently drawing a lot of interest in the scientific community.
- Add conceptual and graphical insights to assist student understanding in places where pitfalls and confusion often occurs.
- Add diversity to the Historical Perspectives and historical marginal pieces.
- Maintain threads throughout the book by previewing topics that come up later and revisiting topics that have been presented before.
- Expand the perspective on curve sketching--beyond just sketching a curve using calculus tools--to include analyzing given curves using calculus tools. (This is an addition of some elements of the “reform” perspective on calculus instruction.)
- “Tighten” the presentation of the mathematics in the text, improving rigor (without increasing the overall level of formality). This includes correcting previous errors and omissions.
Authors
-
Jon Rogawski
Jon Rogawski received his undergraduate and master’s degrees in mathematics simultaneously from Yale University, and he earned his PhD in mathematics from Princeton University, where he studied under Robert Langlands. Before joining the Department of Mathematics at UCLA in 1986, where he was a full professor, he held teaching and visiting positions at the Institute for Advanced Study, the University of Bonn, and the University of Paris at Jussieu and Orsay. Jon’s areas of interest were number theory, automorphic forms, and harmonic analysis on semisimple groups. He published numerous research articles in leading mathematics journals, including the research monograph Automorphic Representations of Unitary Groups in Three Variables (Princeton University Press). He was the recipient of a Sloan Fellowship and an editor of the Pacific Journal of Mathematics and the Transactions of the AMS. As a successful teacher for more than 30 years, Jon Rogawski listened and learned much from his own students. These valuable lessons made an impact on his thinking, his writing, and his shaping of a calculus text. Sadly, Jon Rogawski passed away in September 2011. Jon’s commitment to presenting the beauty of calculus and the important role it plays in students’ understanding of the wider world is the legacy that lives on in each new edition of Calculus.
-
Colin Adams
Colin Adams is the Thomas T. Read professor of Mathematics at Williams College, where he has taught since 1985. Colin received his undergraduate degree from MIT and his PhD from the University of Wisconsin. His research is in the area of knot theory and low-dimensional topology. He has held various grants to support his research, and written numerous research articles. Colin is the author or co-author of The Knot Book, How to Ace Calculus: The Streetwise Guide, How to Ace the Rest of Calculus: The Streetwise Guide, Riot at the Calc Exam and Other Mathematically Bent Stories, Why Knot?, Introduction to Topology: Pure and Applied, and Zombies & Calculus. He co-wrote and appears in the videos “The Great Pi vs. E Debate” and “Derivative vs. Integral: the Final Smackdown.” He is a recipient of the Haimo National Distinguished Teaching Award from the Mathematical Association of America (MAA) in 1998, an MAA Polya Lecturer for 1998-2000, a Sigma Xi Distinguished Lecturer for 2000-2002, and the recipient of the Robert Foster Cherry Teaching Award in 2003. Colin has two children and one slightly crazy dog, who is great at providing the entertainment.
-
Robert Franzosa
Robert (Bob) Franzosa is a professor of mathematics at the University of Maine where he has been on the faculty since 1983. Bob received a BS in mathematics from MIT in 1977 and a Ph.D. in mathematics from the University of Wisconsin in 1984. His research has been in dynamical systems and in applications of topology in geographic information systems. He has been involved in mathematics education outreach in the state of Maine for most of his career. Bob is a co-author of Introduction to Topology: Pure and Applied and Algebraic Models in Our World. He was awarded the University of Maine’s Presidential Outstanding Teaching award in 2003. Bob is married, has two children, three step-children, and one recently-arrived grandson.
Table of Contents
Chapter 1: Precalculus Review
1.1 Real Numbers, Functions, and Graphs
1.2 Linear and Quadratic Functions
1.3 The Basic Classes of Functions
1.4 Trigonometric Functions
1.5 Inverse Functions
1.6 Exponential and Logarithmic Functions
1.7 Technology: Calculators and Computers
Chapter Review Exercises Chapter 2: Limits
2.1 The Limit Idea: Instantaneous Velocity and Tangent Lines
2.2 Investigating Limits
2.3 Basic Limit Laws
2.4 Limits and Continuity
2.5 Indeterminate Forms
2.6 The Squeeze Theorem and Trigonometric Limits
2.7 Limits at Infinity
2.8 The Intermediate Value Theorem
2.9 The Formal Definition of a Limit
Chapter Review Exercises Chapter 3: Differentiation
3.1 Definition of the Derivative
3.2 The Derivative as a Function
3.3 Product and Quotient Rules
3.4 Rates of Change
3.5 Higher Derivatives
3.6 Trigonometric Functions
3.7 The Chain Rule
3.8 Implicit Differentiation
3.9 Derivatives of General Exponential and Logarithmic Functions
3.10 Related Rates
Chapter Review Exercises Chapter 4: Applications of the Derivative
4.1 Linear Approximation and Applications
4.2 Extreme Values
4.3 The Mean Value Theorem and Monotonicity
4.4 The Second Derivative and Concavity
4.5 L’Hôpital’s Rule
4.6 Analyzing and Sketching Graphs of Functions
4.7 Applied Optimization
4.8 Newton’s Method
Chapter Review Exercises Chapter 5: Integration
5.1 Approximating and Computing Area
5.2 The Definite Integral
5.3 The Indefinite Integral
5.4 The Fundamental Theorem of Calculus, Part I
5.5 The Fundamental Theorem of Calculus, Part II
5.6 Net Change as the Integral of a Rate of Change
5.7 The Substitution Method
5.8 Further Integral Formulas
Chapter Review Exercises Chapter 6: Applications of the Integral
6.1 Area Between Two Curves
6.2 Setting Up Integrals: Volume, Density, Average Value
6.3 Volumes of Revolution: Disks and Washers
6.4 Volumes of Revolution: Cylindrical Shells
6.5 Work and Energy
Chapter Review Exercises Chapter 7: Techniques of Integration
7.1 Integration by Parts
7.2 Trigonometric Integrals
7.3 Trigonometric Substitution
7.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions
7.5 The Method of Partial Fractions
7.6 Strategies for Integration
7.7 Improper Integrals
7.8 Numerical Integration
Chapter Review Exercises Chapter 8: Further Applications of the Integral
8.1 Probability and Integration
8.2 Arc Length and Surface Area
8.3 Fluid Pressure and Force
8.4 Center of Mass
Chapter Review Exercises Chapter 9: Introduction to Differential Equations
9.1 Solving Differential Equations
9.2 Models Involving y=k(y-b)
9.3 Graphical and Numerical Methods
9.4 The Logistic Equation
9.5 First-Order Linear Equations
Chapter Review Exercises Chapter 10: Infinite Series
10.1 Sequences
10.2 Summing an Infinite Series
10.3 Convergence of Series with Positive Terms
10.4 Absolute and Conditional Convergence
10.5 The Ratio and Root Tests and Strategies for Choosing Tests
10.6 Power Series
10.7 Taylor Polynomials
10.8 Taylor Series
Chapter Review Exercises Chapter 11: Parametric Equations, Polar Coordinates, and Conic Sections
11.1 Parametric Equations
11.2 Arc Length and Speed
11.3 Polar Coordinates
11.4 Area and Arc Length in Polar Coordinates
11.5 Conic Sections
Chapter Review Exercises Chapter 12: Vector Geometry
12.1 Vectors in the Plane
12.2 Three-Dimensional Space: Surfaces, Vectors, and Curves
12.3 Dot Product and the Angle Between Two Vectors
12.4 The Cross Product
12.5 Planes in 3-Space
12.6 A Survey of Quadric Surfaces
12.7 Cylindrical and Spherical Coordinates
Chapter Review Exercises Chapter 13: Calculus of Vector-Valued Functions
13.1 Vector-Valued Functions
13.2 Calculus of Vector-Valued Functions
13.3 Arc Length and Speed
13.4 Curvature
13.5 Motion in 3-Space
13.6 Planetary Motion According to Kepler and Newton
Chapter Review Exercises Chapter 14: Differentiation in Several Variables
14.1 Functions of Two or More Variables
14.2 Limits and Continuity in Several Variables
14.3 Partial Derivatives
14.4 Differentiability, Tangent Planes, and Linear Approximation
14.5 The Gradient and Directional Derivatives
14.6 The Chain Rule
14.7 Optimization in Several Variables
14.8 Lagrange Multipliers: Optimizing with a Constraint
Chapter Review Exercises Chapter 15: Multiple Integration
15.1 Integration in Two Variables
15.2 Double Integrals Over More General Regions
15.3 Triple Integrals
15.4 Integration in Polar, Cylindrical, and Spherical Coordinates
15.5 Applications of Multiple Integrals
15.6 Change of Variables
Chapter Review Exercises Chapter 16: Line and Surface Integrals
16.1 Vector Fields
16.2 Line Integrals
16.3 Conservative Vector Fields
16.4 Parametrized Surfaces and Surface Integrals
16.5 Surface Integrals of Vector Fields
Chapter Review Exercises Chapter 17: Fundamental Theorems of Vector Analysis
17.1 Green’s Theorem
17.2 Stokes’ Theorem
17.3 Divergence Theorem
Chapter Review Exercises
Product Updates
ACHIEVE FOR CALCULUS
Achieve focuses on engaging students through pre-class and post-class assessment, interactive activities, and a full e-book. Achieve is a complete learning environment with easy course setup, gradebook, and LMS integration.
- Homework: Achieves proprietary grading algorithm combines our homegrown parser and the computer algebra system, SymPy, to accept every valid equivalent answer and to trigger warnings for answers entered in an incorrect format. Detailed, error-specific feedback, and fully worked solutions provide in-question guidance for students as they solve. Homework is easy to format for students by using our intuitive Math Palette, and it is easy to edit for instructors using Macmillans built-in question editor.
- Guided Learn and Practice assignments include interactive content, videos, and instructional feedback to prepare students before they come to class.
- CalcClips tutorial videos are integrated throughout the e-book and available in pre-built Guided Learn & Practice assignments meant for formative exercise exploration.
- Dynamic Figures, powered by Desmos, take students experience further with conceptual and computational questions about the interactive Dynamic Figures. These book-specific figures are embedded directly in the e-book and included with assessment in pre-built Guided Learn & Practice assignments.
- LearningCurve adaptive quizzing offers individualized question sets and feedback for each student based on his or her correct and incorrect responses.
New in Achieve for 2023:
- Over 100 Desmos-powered Graded Graph exercises, which allow students to manipulate points and functions on an autograded graph, are available in the question bank.
- Video feedback, embedded within the feedback tab of homework exercises, is available for 250 of the most frequently assigned questions, providing brief step-by-step tutorial videos to guide students toward the correct answer.
- A new video index is available in the Resources tab, linking to correlated videos from the popular Patrick JMT YouTube channel.
- New question types inspired by generative AI tools encourage students to identify the error and think conceptually to recognize the mistaken step. These 100+ new exercises, marked with "(ITE)" in the question bank, provide an opportunity to show mastery of the entire problem, instead of simply finding the final correct answer.
- Chapter-level adaptive quizzes are now available as an end of chapter study tool, in addition to existing section-level adaptive quizzes.
For more information on Achieve platform updates, visit the Achieve Whats New page here:
https://www.macmillanlearning.com/college/us/digital/achieve/whats-new
General themes of the revision include the following (a detailed list of changes available):
- Rewrite portions to increase readability without reducing the level of mathematical rigor. This includes increasing clarity, improving organization, and building consistency.
- Add applications, particularly in life science and earth science to broaden the scientific fields represented in the book. In particular, there are a number of new examples and exercises in climate science, an area that is currently drawing a lot of interest in the scientific community.
- Add conceptual and graphical insights to assist student understanding in places where pitfalls and confusion often occurs.
- Add diversity to the Historical Perspectives and historical marginal pieces.
- Maintain threads throughout the book by previewing topics that come up later and revisiting topics that have been presented before.
- Expand the perspective on curve sketching--beyond just sketching a curve using calculus tools--to include analyzing given curves using calculus tools. (This is an addition of some elements of the “reform” perspective on calculus instruction.)
- “Tighten” the presentation of the mathematics in the text, improving rigor (without increasing the overall level of formality). This includes correcting previous errors and omissions.
The authors goal for the book is that its clearly written, could be read by a calculus student and would motivate them to engage in the material and learn more. Moreover, to create a text in which exposition, graphics, and layout would work together to enhance all facets of a student’s calculus experience. They paid special attention to certain aspects of the text:
1. Clear, accessible exposition that anticipates and addresses student difficulties.
2. Layout and figures that communicate the flow of ideas.
3. Highlighted features that emphasize concepts and mathematical reasoning including Conceptual Insight, Graphical Insight, Assumptions Matter, Reminder, and Historical Perspective.
4. A rich collection of examples and exercises of graduated difficulty that teach basic skills as well as problem-solving techniques, reinforce conceptual understanding, and motivate calculus through interesting applications. Each section also contains exercises that develop additional insights and challenge students to further develop their skills.
Achieve for Calculus redefines homework by offering guidance for every student and support for every instructor. Homework is designed to teach by correcting students misconceptions through targeted feedback, meaningful hints, and full solutions, helping teach students conceptual understanding and critical thinking in real-world contexts.
Success Stories
Here are a few examples of how Achieve has helped instructors like you improve student preparedness, enhance their sense of belonging, and achieve course goals they set for themselves.
Prof. Kiandra Johnson, Spelman College
See how the resources in Achieve help you engage students before, during, and after class.
Prof. Jennifer Duncan
Use diagnostics in Achieve for a snapshot into cognitive and non-cognitive factors that may impact your students’ preparedness.
Prof. Ryan Elsenpeter
Here’s why educators who use Achieve would recommend it to their peers.
Related Titles
Looking for instructor resources like Test Banks, Lecture Slides, and Clicker Questions? Request access to Achieve to explore the full suite of instructor resources.
Instructor Resources
Instructor Resources
Access Test Bank
You need to sign in as a verified instructor to access the Test Bank.
Test Bank for Calculus: Early Transcendentals
Jon Rogawski; Colin Adams; Robert Franzosa | Fourth Edition | ©2019 | ISBN:9781319242923
You've selected:
Click the E-mail Download Link button and we'll send you an e-mail at with links to download your instructor resources. Please note there may be a delay in delivering your e-mail depending on the size of the files.
Warning! These materials are owned by Macmillan Learning or its licensors and are protected by copyright laws in the United States and other jurisdictions. Such materials may include a digital watermark that is linked to your name and email address in your Macmillan Learning account to identify the source of any materials used in an unauthorised way and prevent online piracy. These materials are being provided solely for instructional use by instructors who have adopted Macmillan Learning’s accompanying textbooks or online products for use by students in their courses. These materials may not be copied, distributed, sold, shared, posted online, or used, in print or electronic format, except in the limited circumstances set forth in the Macmillan Learning Terms of Use and any other reproduction or distribution is illegal. These materials may not be made publicly available under any circumstances. All other rights reserved. For more information about the use of your personal data including for the purposes of anti-piracy enforcement, please refer to Macmillan Learning's.Privacy Notice
Thank you!
Your download request has been received and your download link will be sent to .
Please note you could wait up to 30 to 60 minutes to receive your download e-mail depending on the number and size of the files. We appreciate your patience while we process your request.
Check your inbox, trash, and spam folders for an e-mail from InstructorResources@macmillan.com.
If you do not receive your e-mail, please visit macmillanlearning.com/support.
FAQs
-
-
Are you a campus bookstore looking for ordering information?
MPS Order Search Tool (MOST) is a web-based purchase order tracking program that allows customers to view and track their purchases. No registration or special codes needed! Just enter your BILL-TO ACCT # and your ZIP CODE to track orders.
Canadian Stores: Please use only the first five digits/letters in your zip code on MOST.
Visit MOST, our online ordering system for booksellers: https://tracking.mpsvirginia.com/Login.aspx
Learn more about our Bookstore programs here: https://www.macmillanlearning.com/college/us/contact-us/booksellers
-
-
-
Our courses currently integrate with Canvas, Blackboard (Learn and Ultra), Brightspace, D2L, and Moodle. Click on the support documentation below to find out more details about the integration with each LMS.
Integrate Macmillan courses with Blackboard
Integrate Macmillan courses with Canvas
-
-
-
If you’re a verified instructor, you can request a free sample of our courseware, e-book, or print textbook to consider for use in your courses. Only registered and verified instructors can receive free print and digital samples, and they should not be sold to bookstores or book resellers. If you don't yet have an existing account with Macmillan Learning, it can take up to two business days to verify your status as an instructor. You can request a free sample from the right side of this product page by clicking on the "Request Instructor Sample" button or by contacting your rep. Learn more.
-
-
-
Sometimes also referred to as a spiral-bound or binder-ready textbook, loose-leaf textbooks are available to purchase. This three-hole punched, unbound version of the book costs less than a hardcover or paperback book.
-
-
-
Achieve (full course) includes our complete e-book, as well as online quizzing tools, multimedia assets, and iClicker active classroom manager.
Most Achieve Essentials courses do not include our e-books and adaptive quizzing.
Visit our comparison table for details: https://www.macmillanlearning.com/college/us/digital/achieve/compare
-
-
-
Achieve (full course) includes our complete e-book, as well as online quizzing tools, multimedia assets, and iClicker active classroom manager.
Achieve Read & Practice only includes our e-book and adaptive quizzing, and does not include instructor resources and assignable assessments. Read & Practice does integrate with LMS.
Visit our comparison table for details: https://www.macmillanlearning.com/college/us/digital/achieve/compare
-
-
-
We can help! Contact your representative to discuss your specific needs for your course. If our off-the-shelf course materials don’t quite hit the mark, we also offer custom solutions made to fit your needs.
-
ISBN:9781319057633
Access all your course tools in one place!
ISBN:9781319055905
Take notes, add highlights, and download our mobile-friendly e-books.
ISBN:9781319055912
Save money with our hole-punched, loose-leaf textbook.
ISBN:9781319406981
This package includes Achieve and Loose-Leaf.
ISBN:9781319254414
Read and study old-school with our bound texts.
FAQs
-
-
Are you a campus bookstore looking for ordering information?
MPS Order Search Tool (MOST) is a web-based purchase order tracking program that allows customers to view and track their purchases. No registration or special codes needed! Just enter your BILL-TO ACCT # and your ZIP CODE to track orders.
Canadian Stores: Please use only the first five digits/letters in your zip code on MOST.
Visit MOST, our online ordering system for booksellers: https://tracking.mpsvirginia.com/Login.aspx
Learn more about our Bookstore programs here: https://www.macmillanlearning.com/college/us/contact-us/booksellers
-
-
-
Our courses currently integrate with Canvas, Blackboard (Learn and Ultra), Brightspace, D2L, and Moodle. Click on the support documentation below to find out more details about the integration with each LMS.
Integrate Macmillan courses with Blackboard
Integrate Macmillan courses with Canvas
-
-
-
If you’re a verified instructor, you can request a free sample of our courseware, e-book, or print textbook to consider for use in your courses. Only registered and verified instructors can receive free print and digital samples, and they should not be sold to bookstores or book resellers. If you don't yet have an existing account with Macmillan Learning, it can take up to two business days to verify your status as an instructor. You can request a free sample from the right side of this product page by clicking on the "Request Instructor Sample" button or by contacting your rep. Learn more.
-
-
-
Sometimes also referred to as a spiral-bound or binder-ready textbook, loose-leaf textbooks are available to purchase. This three-hole punched, unbound version of the book costs less than a hardcover or paperback book.
-
-
-
Achieve (full course) includes our complete e-book, as well as online quizzing tools, multimedia assets, and iClicker active classroom manager.
Most Achieve Essentials courses do not include our e-books and adaptive quizzing.
Visit our comparison table for details: https://www.macmillanlearning.com/college/us/digital/achieve/compare
-
-
-
Achieve (full course) includes our complete e-book, as well as online quizzing tools, multimedia assets, and iClicker active classroom manager.
Achieve Read & Practice only includes our e-book and adaptive quizzing, and does not include instructor resources and assignable assessments. Read & Practice does integrate with LMS.
Visit our comparison table for details: https://www.macmillanlearning.com/college/us/digital/achieve/compare
-
-
-
We can help! Contact your representative to discuss your specific needs for your course. If our off-the-shelf course materials don’t quite hit the mark, we also offer custom solutions made to fit your needs.
-
Calculus: Early Transcendentals
The authors goal for the book is that its clearly written, could be read by a calculus student and would motivate them to engage in the material and learn more. Moreover, to create a text in which exposition, graphics, and layout would work together to enhance all facets of a student’s calculus experience. They paid special attention to certain aspects of the text:
1. Clear, accessible exposition that anticipates and addresses student difficulties.
2. Layout and figures that communicate the flow of ideas.
3. Highlighted features that emphasize concepts and mathematical reasoning including Conceptual Insight, Graphical Insight, Assumptions Matter, Reminder, and Historical Perspective.
4. A rich collection of examples and exercises of graduated difficulty that teach basic skills as well as problem-solving techniques, reinforce conceptual understanding, and motivate calculus through interesting applications. Each section also contains exercises that develop additional insights and challenge students to further develop their skills.
Achieve for Calculus redefines homework by offering guidance for every student and support for every instructor. Homework is designed to teach by correcting students misconceptions through targeted feedback, meaningful hints, and full solutions, helping teach students conceptual understanding and critical thinking in real-world contexts.
These materials are owned by Macmillan Learning or its licensors and are protected by United States copyright law. They are being provided solely for evaluation purposes only by instructors who are considering adopting Macmillan Learning's textbooks or online products for use by students in their courses. These materials may not be copied, distributed, sold, shared, posted online, or used, in print or electronic format, except in the limited circumstances set forth in the Macmillan Learning Terms of Use and any other reproduction or distribution is illegal. These materials may not be made publicly available under any circumstances. All other rights reserved. © 2020 Macmillan Learning.
BY CLICKING ON THE SAMPLE CHAPTER LINK BELOW, YOU ARE AGREEING TO USE THESE MATERIALS ONLY IN ACCORDANCE WITH MACMILLAN LEARNING'S TERMS OF USE.
Select a file to view: